Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Theranostics ; 13(13): 4430-4448, 2023.
Article in English | MEDLINE | ID: mdl-37649614

ABSTRACT

Background: Hepatic fibrosis is a premalignant lesion, and how injured hepatocytes transform into malignancy in a fibrotic microenvironment is poorly understood. Senescence is one of major fates of activated hepatic stellate cells (HSCs). Paucity of literature is available regarding the influence of senescent HSCs on behavior of steatotic hepatocytes. Methods: Senescent HSCs were identified in a murine model of nonalcoholic steatohepatitis (NASH)-fibrosis-hepatocellular carcinoma (HCC) and human NASH-HCC specimens. Secretome of senescent HSCs was analyzed by label-free mass-spectrum (NanoRPLC-MS/MS) and verified quantitatively. Results: Senescent HSCs were increased along with the progression from nonalcoholic fatty liver (NAFL), NASH to NASH-fibrosis, and reached a peak at the stage of advanced fibrosis and then decreased when hepatocellular dysplasia or HCC was developed. Critical components affecting proliferation, epithelial-mesenchymal transition (EMT) or migration were identified from secretome of senescent HSCs, and may activate morphogenic hedgehog or oncogenic Wnt signaling pathways to accelerate malignant transformation of steatotic or dysplastic hepatocytes. Primary hepatocytes stimulated with conditioned medium from senescent HSCs, in co-culture or co-cultured in 3D spheroids with senescent HSCs exhibited an enhanced proliferating or EMT profile. Conclusion: Senescent HSCs secreted a characterized protein profile favoring malignant transformation of steatotic or dysplastic hepatocytes through activating morphogenic hedgehog or oncogenic Wnt signaling pathways in the progression from NASH to malignancy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Hepatic Stellate Cells , Secretome , Hedgehogs , Tandem Mass Spectrometry , Liver Cirrhosis , Hyperplasia , Tumor Microenvironment
2.
J Oncol ; 2022: 1971559, 2022.
Article in English | MEDLINE | ID: mdl-35342408

ABSTRACT

microRNAs (miRNAs) and miRNA-mediated regulatory networks are promising candidates in the prevention and treatment of cancer, but the role of specific miRNAs involved in hepatocellular carcinoma (HCC) remains to be elusive. Herein, we found that miR-106b-5p is upregulated in both HCC patients' tumor tissues and HCC cell lines. The miR-106b-5p expression level was positively correlated with α-fetoprotein (AFP), hepatitis B surface antigen (HBsAg), and tumor size. Overexpression of miR-106b-5p promoted cell proliferation, migration, cell cycle G1/S transition, and tumor growth, while decreased miR-106b-5p expression had opposite effects. Mechanistic studies showed that B-cell translocation gene 3 (BTG3), a known antiproliferative protein, was a direct target of miR-106b-5p, whose expression level is inversely correlated with miR-106b-5p expression. Moreover, miR-106b-5p positively regulates cell proliferation in a BTG3-dependent manner, resulting in upregulation of Bcl-xL, cyclin E1, and CDK2, as well as downregulation of p27. More importantly, we also demonstrated that miR-106b-5p enhances the resistance to sorafenib treatment in a BTG3-dependent manner. The in vivo findings showed that mice treated with a miR-106b-5p sponge presented a smaller tumor burden than controls, while the mice injected cells treated with miR-106b-5p had more considerable tumor burden than controls. Altogether, these data suggest that miR-106b-5p promotes cell proliferation and cell cycle and increases HCC cells' resistance to sorafenib through the BTG3/Bcl-xL/p27 signaling pathway.

3.
Mol Ther Nucleic Acids ; 27: 390-403, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35036052

ABSTRACT

Pre-mRNA processing factor 19 (PRP19) is elevated in hepatocellular carcinoma (HCC); however, little is known about its function in DNA damage repair in HCC. In this study, analysis of The Cancer Genome Atlas data and our tumor models after ionizing radiation (IR) treatment indicated that increased expression of PRP19 was positively correlated with DNA damage repair. Gain of PRP19 expression induced by plasmids resulted in decreases in apoptosis and double-strand breaks (DSBs), and an increase in cell survival after IR. Loss of PRP19 expression induced by small interfering RNAs resulted in the accumulation of apoptosis and DSBs, and a decrease in cell survival. Mechanistically, the effect of PRP19 on DNA damage repair was mediated by the modulation of cyclin D1 expression in HCC. PRP19 controlled the translation of cyclin D1 by modulating eukaryotic initiation factor 4E. PRP19 affected the DNA damage repair ability of cyclin D1 by interacting with the WD40 domain. The combination of PRP19 and cyclin D1 was more valuable than each single marker for predicting the prognosis of patients. Taken together, the present results demonstrate that PRP19 promotes DNA damage repair by modulating cyclin D1 expression and function, thereby contributing to the radioresistance in HCC.

4.
J Transl Med ; 19(1): 347, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34389031

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAM) are immunosuppressive cells that contribute to impaired anti-cancer immunity. Iron plays a critical role in regulating macrophage function. However, it is still elusive whether it can drive the functional polarization of macrophages in the context of cancer and how tumor cells affect the iron-handing properties of TAM. In this study, using hepatocellular carcinoma (HCC) as a study model, we aimed to explore the effect and mechanism of reduced ferrous iron in TAM. METHODS: TAM from HCC patients and mouse HCC tissues were collected to analyze the level of ferrous iron. Quantitative real-time PCR was used to assess M1 or M2 signature genes of macrophages treated with iron chelators. A co-culture system was established to explore the iron competition between macrophages and HCC cells. Flow cytometry analysis was performed to determine the holo-transferrin uptake of macrophages. HCC samples from The Cancer Genome Atlas (TCGA) were enrolled to evaluate the prognostic value of transferrin receptor (TFRC) and its relevance to tumor-infiltrating M2 macrophages. RESULTS: We revealed that ferrous iron in M2-like TAM is lower than that in M1-like TAM. In vitro analysis showed that loss of iron-induced immunosuppressive M2 polarization of mouse macrophages. Further experiments showed that TFRC, the primary receptor for transferrin-mediated iron uptake, was overexpressed on HCC cells but not TAM. Mechanistically, HCC cells competed with macrophages for iron to upregulate the expression of M2-related genes via induction of HIF-1α, thus contributing to M2-like TAM polarization. We further clarified the oncogenic role of TFRC in HCC patients by TCGA. TFRC is significantly increased in varieties of malignancies, including HCC, and HCC patients with high TFRC levels have considerably shortened overall survival. Also, TFRC is shown to be positively related to tumor-infiltrating M2 macrophages. CONCLUSIONS: Collectively, we identified iron starvation through TFRC-mediated iron competition drives functional immunosuppressive polarization of TAM, providing new insight into the interconnection between iron metabolism and tumor immunity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Cell Line, Tumor , Humans , Iron , Mice , Tumor-Associated Macrophages
5.
World J Gastroenterol ; 26(27): 3917-3928, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32774066

ABSTRACT

BACKGROUND: Chronic hepatitis B virus (HBV) infection is a leading cause of liver morbidity and mortality worldwide. Liver fibrosis resulting from viral infection-associated inflammation and direct liver damage plays an important role in disease management and prognostication. The mechanisms underlying the contribution of the liver microenvironment to fibrosis in HBV patients are not fully understood. There is an absence of effective clinical treatments for liver fibrosis progression; thus, establishing a suitable in vitro microenvironment in order to design novel therapeutics and identify molecular biomarkers to stratify patients is urgently required. AIM: To examine a subset of pre-selected microenvironment factors of chronic HBV patients that may underlie fibrosis, with a focus on fibroblast activation. METHODS: We examined the gene expression of key microenvironment factors in liver samples from patients with more advanced fibrosis compared with those with less severe fibrosis. We also used the human stellate cell line LX-2 in the in vitro study. Using different recombinant cytokines and growth factors or their combination, we studied how these factors interacted with LX-2 cells and pinpointed the cross-talk between the aforementioned factors and screened the most important factors. RESULTS: Of the secreted factors examined, transforming growth factor (TGF)-ß1, interleukin (IL)-1ß and tumor necrosis factor (TNF)-α were increased in patients with advanced fibrosis. We found that besides TGF-ß1, IL-1ß can also induce a profibrotic cascade by stimulating the expression of connective tissue growth factor and platelet-derived growth factor (PDGF) in LX-2 cells. Furthermore, the proinflammatory response can be elicited in LX-2 cells following treatment with IL-1ß and TNF-α, suggesting that stellate cells can respond to proinflammatory stimuli. By combining IL-1ß and TGF-ß1, we observed not only fibroblast activation as shown by αlpha-smooth muscle actin and PDGF induction, but also the inflammatory response as shown by increased expression of IL-1ß. CONCLUSION: Collectively, our data from HBV patients and in vitro studies demonstrate that the hepatic microenvironment plays an important role in mediating the crosstalk between profibrotic and proinflammatory responses and modulating fibrosis in chronic HBV patients. For the establishment of a suitable in vitro microenvironment for HBV-induced liver fibrosis, not only TGF-ß1 but also IL-1ß should be considered as a necessary environmental factor.


Subject(s)
Hepatitis B, Chronic , Liver Cirrhosis , Adult , Female , Hepatic Stellate Cells/pathology , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/pathology , Humans , Liver Cirrhosis/pathology , Male , Middle Aged , Platelet-Derived Growth Factor , Transforming Growth Factor beta1 , Tumor Necrosis Factor-alpha
6.
Oncogene ; 39(35): 5768-5781, 2020 08.
Article in English | MEDLINE | ID: mdl-32719439

ABSTRACT

Cumulative evidence suggests that microRNAs (miRNAs) promote gene expression in cancers. However, the pathophysiologic relevance of miRNA-mediated RNA activation in hepatocellular carcinoma (HCC) remains to be established. Our previous miRNA expression profiling in seven-paired HCC specimens revealed miR-93-5p as an HCC-related miRNA. In this study, miR-93-5p expression was assessed in HCC tissues and cell lines by quantitative real-time PCR and fluorescence in situ hybridization. The correlation of miR-93-5p expression with survival and clinicopathological features of HCC was determined by statistical analysis. The function and potential mechanism of miR-93-5p in HCC were further investigated by a series of gain- or loss-of-function experiments in vitro and in vivo. We identified that miR-93-5p, overexpressed in HCC specimens and cell lines, leads to poor outcomes in HCC cases and promotes proliferation, migration, and invasion in HCC cell lines. Mechanistically, rather than decreasing target mRNA levels as expected, miR-93-5p binds to the 3'-untranslated region (UTR) of mitogen-activated protein kinase kinase kinase 2 (MAP3K2) to directly upregulate its expression and downstream p38 and c-Jun N-terminal kinase (JNK) pathway, thereby leading to cell cycle progression in HCC. Notably, we also demonstrated that c-Jun, a downstream effector of the JNK pathway, enhances miR-93-5p transcription by targeting its promoter region. Besides, downregulation of miR-93-5p significantly retarded tumor growth, while overexpression of miR-93-5p accelerated tumor growth in the HCC xenograft mouse model. Altogether, we revealed a miR-93-5p/MAP3K2/c-Jun positive feedback loop to promote HCC progression in vivo and in vitro, representing an RNA-activating role of miR-93-5p in HCC development.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , MAP Kinase Kinase Kinase 2/metabolism , MicroRNAs/metabolism , Proto-Oncogene Proteins c-jun/metabolism , 3' Untranslated Regions , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Hep G2 Cells , Heterografts , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MAP Kinase Kinase Kinase 2/biosynthesis , MAP Kinase Kinase Kinase 2/genetics , Male , Mice , Mice, Nude , MicroRNAs/genetics , Neoplasm Invasiveness , Phosphorylation , Promoter Regions, Genetic , Proto-Oncogene Proteins c-jun/genetics , Transfection , Up-Regulation
7.
Ann Surg Oncol ; 27(5): 1546-1557, 2020 May.
Article in English | MEDLINE | ID: mdl-32157528

ABSTRACT

BACKGROUND: The mechanistic target of rapamycin (mTOR) pathway, containing mTOR complex 1 (mTORC1) and mTORC2, is dysregulated in multiple cancers, including hepatocellular carcinoma (HCC). Mammalian lethal with sec-13 protein 8 (mLST8) is a shared constituent of both mTORC1 and mTORC2, yet little is known regarding its role in HCC development. METHODS: mLST8 expression was detected in a total of 186 pairs of HCC and adjacent non-tumor specimens. The correlation between mLST8 level and clinicopathological features or prognostic significance were analyzed. The role of mLST8 on biological functions was also preliminarily studied. RESULTS: The study revealed that the mLST8 level was dramatically higher in HCC specimens than in adjacent non-tumor specimens. mLST8 overexpression positively correlated with tumor size, differentiation, and vessel invasion. Cases with elevated mLST8 level had more unfavorable overall survival (OS) and disease-free survival (DFS) than those with downregulated mLST8 level. Multivariate analysis demonstrated that mLST8 upregulation was an independent predictive marker for OS and DFS. Calibration curves from nomogram models indicated an excellent coherence between nomogram prediction and actual situation. Decision curve analysis proved that mLST8-based nomograms presented much higher predictive accuracy when compared with conventional clinical staging systems. Mechanistically, mLST8 enhanced cell proliferation and invasion through the AKT (protein kinase B) pathway. CONCLUSIONS: Our study demonstrates that mLST8 exerts an oncogenic role in HCC and may become a promising prognostic biomarker and therapeutic target for HCC patients.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , mTOR Associated Protein, LST8 Homolog/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Disease-Free Survival , Female , Humans , Male , Middle Aged , Multivariate Analysis , Nomograms , Prognosis , Up-Regulation , Young Adult
8.
J Cell Biochem ; 121(4): 2938-2949, 2020 04.
Article in English | MEDLINE | ID: mdl-31692072

ABSTRACT

BACKGROUND: Calcium-binding tyrosine phosphorylation-regulated protein (CABYR) is a group of isoforms produced by alternative splicing and is overexpressed in human malignancies including hepatocellular carcinoma (HCC). However, the prognostic value and biological functions of its major protein isoforms, named CABYR-a/b (combined CABYR-a and CABYR-b), in HCC remain to be established. METHODS: CABYR-a/b expression was detected in HCC tissues and cell lines by quantitative real-time polymerase chain reaction and Western blot analysis. The correlation of CABYR-a/b expression with clinical characteristics and its prognosis impact were determined by statistical analysis. Finally, the biological functions and molecular mechanism of CABYR-a/b were also investigated using molecular biology approaches. RESULTS: The present research found that CABYR-a/b was markedly elevated in HCC specimens and cell lines. Upregulated CABYR-a/b level had positive association with tumor size and differentiation in patients. Moreover, cases with elevated CABYR-a/b level had poorer overall survival (OS) and disease-free survival (DFS) than those with reduced CABYR-a/b level. Multivariate analysis and prognostic nomograms demonstrated that CABYR-a/b overexpression was an independent predictive indicator for OS and DFS. The calibration curve for the odds of OS and DFS demonstrated that the prediction by nomograms was in excellent accordance with actual situation. CABYR-a/b downregulation suppressed cell proliferation and induced G1-phase arrest via decreasing cyclin D1 and cyclin dependent kinase 4, while promoted apoptosis by reducing B-cell lymphoma 2 (Bcl-2) and increasing Bcl-2-associated death promoter. CONCLUSION: Our research indicates that CABYR-a/b exerts an oncogenic effect on HCC development and may become a new prognostic indicator for patients with HCC.


Subject(s)
Apoptosis , Calcium-Binding Proteins , Calcium/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Tyrosine/chemistry , Aged , Alternative Splicing , Biomarkers, Tumor/metabolism , Calcium-Binding Proteins/metabolism , Carcinoma, Hepatocellular/diagnosis , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/metabolism , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/diagnosis , Male , Middle Aged , Phosphorylation , Prognosis , Protein Binding , Protein Isoforms , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Small Interfering/metabolism , Treatment Outcome
9.
Int J Mol Med ; 44(5): 1844-1854, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31485608

ABSTRACT

Long non­coding RNAs (lncRNAs) have been shown to contribute to progression and prognosis of hepatocellular carcinoma (HCC). However, expression profiling and interaction of lncRNAs with messenger RNAs (mRNAs) and microRNAs (miRNAs) remain largely unknown in HCC. The expression profiling of lncRNAs, mRNA and miRNAs was obtained using microarray. The Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis were used to characterize potential functions of differentially expressed mRNAs. Cytoscape was applied to construct an lncRNA­miRNA­mRNA co­expression network and candidate lncRNAs were validated via quantitative PCR in 30 pairs of HCC and adjacent tumor­free tissues. In this study, 1,056 upregulated and 1,288 downregulated lncRNAs were identified, while 2,687 mRNAs and 6 miRNAs were aberrantly expressed in HCC compared with adjacent tumor­free tissues. Potential functions of differentially expressed mRNAs were demonstrated to significantly participate in modulating critical genes in the cell cycle, such as cyclin E1 and cyclin B2. After screening, 95 lncRNAs, 5 miRNAs and 36 mRNAs were recruited for construction of lncRNA­mRNA­miRNA co­expression network in the cell cycle pathway. Subsequently, the top 5 lncRNAs that potentially modulate critical genes in the cell cycle were selected as the candidates for further verification. Kaplan­Meier curves using the Cancer Genome Atlas database showed that 13 targeted mRNAs were associated with overall survival of HCC patients. Finally, three lncRNAs, including ENST00000522221, lnc­HACE1­6:1 and lnc­ICOSLG­11:1, are significantly upregulated in HCC tissues compared with adjacent tumor­free tissues. These findings suggest that lncRNAs play essential roles in the pathogenesis of HCC via regulating coding genes and miRNAs, and may be important targets for diagnosis and treatment of this disease.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Cycle/genetics , Gene Expression Regulation, Neoplastic/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Gene Ontology , Humans , Kaplan-Meier Estimate , Male , Middle Aged
10.
Biomed Pharmacother ; 105: 1147-1154, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30021351

ABSTRACT

microRNA-19a-3p (miR-19a-3p) has been reported to regulate cell proliferation in hepatocellular carcinoma (HCC), but its role in HCC metastasis remains unknown. In this study, miR-19a-3p was noted to be upregulated in HCC specimens and cell lines. Aberrant expression of miR-19a-3p stimulated HCC cell metastasis, and phosphatase and tensin homolog (PTEN) was shown to be a direct target of miR-19a-3p. miR-19a-3p-mediated HCC metastasis was reversed by restoration of PTEN or could be imitated by silencing of PTEN. Modulation of miR-19a-3p also altered expression of phosphorylated Akt, a downstream mediator of PTEN. Moreover, aberrant expression of miR-19a-3p induced sorafenib resistance by regulating the PTEN/Akt pathway. In conclusion, ectopic expression of miR-19a-3p contributes to HCC metastasis and chemoresistance by modulating PTEN expression and the PTEN-dependent pathways.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Drug Resistance, Neoplasm/physiology , Liver Neoplasms/metabolism , MicroRNAs/biosynthesis , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/genetics , Signal Transduction/physiology
11.
Tohoku J Exp Med ; 245(2): 89-98, 2018 06.
Article in English | MEDLINE | ID: mdl-29899182

ABSTRACT

Hepatocellular carcinoma (HCC) remains a major health problem for delayed diagnosis, inefficient surveillance and poor prognosis. Recent studies have indicated that non-coding RNAs contribute to the development of new strategies for diagnosis and treatment of HCC. In the present study, we employed 18 pairs of HCC and matched non-tumor tissues for the identification of differentially expressed microRNAs (miRNAs) in HCC, among which 7 paired specimens were selected randomly for microarray detection. Totally, twenty-three miRNAs were screened out to have statistically significant differences with the threshold of P < 0.01 and fold-change ≥ 2.0 or ≤ 0.5 using miRNA microarray. In the validation stage, two miRNAs exhibited higher expression levels in the HCC tissues compared with those in the matched non-tumor tissues, whereas the expression levels of ten miRNAs were lower in the HCC tissues than those in the matched non-tumor tissues. In further analysis, eight miRNAs, including miR-4270, miR-125b-5p, miR-199a-3p, miR-10a-5p, miR-424-5p, miR-195-5p, miR-106b-5p and miR-3651, were retained, when another constraint about the signal intensity of microarray probes was established. Among these miRNAs, our study was the first to show the higher expression level of miR-3651 and the lower expression level of miR-4270 in HCC. The areas under the receiver-operating-characteristic curve values of miR-3651 and miR-4270 were 0.730 and 0.967, respectively, indicating their potential diagnostic values. Our results may help provide the context for expanded interpretations of miRNA studies involved in the progression of liver disease, potentially serving as a diagnostic tool of HCC.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , MicroRNAs/genetics , Adult , Aged , Area Under Curve , Biomarkers, Tumor/metabolism , Female , Humans , Male , MicroRNAs/metabolism , Middle Aged , Oligonucleotide Array Sequence Analysis , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...